Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Dibromo-3-(5-bromo-6-methoxy-2naphthyl)-1-(2,4-dichlorophenyl)propan-1-one

H. S. Yathirajan,^a Anil M. Mayekar,^a B. Narayana,^b B. K. Sarojini^c and Michael Bolte^d*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^cDepartment of Chemistry, P. A. College of Engineering,

Nadupadavu, Mangalore 574 153, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 30 March 2007; accepted 30 March 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.095; data-to-parameter ratio = 22.6.

The title compound, $C_{20}H_{13}Br_3Cl_2O_2$, arose unexpectedly as the product of a bromination reaction. The bromo substituents at the central C–C single bond are *trans* to each other [Br– C–C–Br = 178.53 (13)°] and the dihedral angle between the mean planes of the aromatic ring systems is 38.28 (10)°.

Related literature

For some recent crystal structures of related chalcones, see: Butcher, Yathirajan, Anilkumar *et al.* (2006); Butcher, Yathirajan, Sarojini *et al.* (2006); Harrison *et al.* (2005); Yathirajan *et al.* (2007); Allen (2002); Bruno *et al.* (2004).

Experimental

Crystal data $C_{20}H_{13}Br_{3}Cl_{2}O_{2}$ $M_{r} = 595.93$

organic	compound	S

Mo $K\alpha$ radiation $\mu = 6.38 \text{ mm}^{-1}$

 $0.23 \times 0.22 \times 0.20$ mm

T = 173 (2) K

b = 9.8861 (5) Å c = 21.7179 (9) Å $\beta = 98.298 (3)^{\circ}$ $V = 1986.61 (16) \text{ Å}^{3}$ Z = 4

Data collection

Stoe IPDSII two-circle diffractometer Absorption correction: multi-scan (<i>MULABS</i> ; Spek, 2003; Blessing, 1995)	$T_{min} = 0.236, T_{max} = 0.263$ (expected range = 0.251–0.279) 30941 measured reflections 5563 independent reflections 4864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$	246 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
5563 reflections	$\Delta \rho_{\rm min} = -0.75 \text{ e} \text{ Å}^{-3}$

Table 1

Selected torsion angles ($^{\circ}$).

Br2-C2-C3-Br3	178.53 (13)	O1-C1-C11-C12	-41.1 (4)

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

ANM thanks the University of Mysore for permission to carry out the research work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2359).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.
- Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o2525–o2527.
- Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.
- Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2196–o2197.

supplementary materials

Acta Cryst. (2007). E63, o2345 [doi:10.1107/81600536807015759]

2,3-Dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl)propan-1-one

H. S. Yathirajan, A. M. Mayekar, B. Narayana, B. K. Sarojini and M. Bolte

Comment

The title compound, (I), was obtained as an unexpected product in a bromination reaction. The expected compound was 2,3-dibromo-3-(6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl)propan-1-one which reacted further with excess bromine to form 2,3-dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl)propan-1-one.

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Crystallographic Database, Version 5.28, November 2006; updated January 2007; Mogul Version 1.1; Allen, 2002, Bruno *et al.*, 2004). The bromo substituents at the central C—C single bond are trans to each other and the carbonyl group is is twisted by -41.1 (4)° out of the plane of the adjacent dichlorophenyl ring. The two aromatic ring systems are not coplanar [dihedral angle 38.28 (10)°].

For structures of related chalcones see Harrison et al. (2005, Butcher et al. (2006a,b) and Yathirajan et al. (2007).

Experimental

(2E)-1-(2,4-Dichlorophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (3.57 g, 0.01 mol) was treated with bromine in acetic acid (30%) until the orange colour of the solution persisted. After stirring for half an hour, the contents were poured on to crushed ice. The resulting solid mass was collected by filtration. The compound was dried and recrystallized from ethanol. Crystals of (I) suitable for structure determination were obtained from acetone by slow evaporation (yield 80%; m.p. 439-441 K). Analysis for $C_{20}H_{13}Br_3Cl_2O_2$: found (calculated): C 40.20 (40.31%); H 2.14 (2.20%).

Refinement

The H atoms were found in a difference map, relocated in idealised locations (C—H = 0.95-1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The methyl

group was allowed to rotate but not to tip to best fit the electron density.

Figures

Fig. 1. Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level (arbitrary spheres for the H atoms).

2,3-Dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl)propan-1-one

 $F_{000} = 1152$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.8 - 28.8^{\circ}$

 $\mu = 6.38 \text{ mm}^{-1}$

T = 173 (2) K

Block, light yellow $0.23 \times 0.22 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.992 {\rm Mg m}^{-3}$ Mo Ka radiation

Cell parameters from 30108 reflections

Crystal	data
Crystat	uuuu

C₂₀H₁₃Br₃Cl₂O₂ $M_r = 595.93$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.3506 (4) Å*b* = 9.8861 (5) Å c = 21.7179 (9) Å $\beta = 98.298 (3)^{\circ}$ $V = 1986.61 (16) \text{ Å}^3$ Z = 4

Data collection

Stoe IPDSII two-circle diffractometer	5563 independent reflections
Radiation source: fine-focus sealed tube	4864 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.070$
T = 173(2) K	$\theta_{\text{max}} = 29.7^{\circ}$
ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -12 \rightarrow 11$
$T_{\min} = 0.236, T_{\max} = 0.263$	$k = -13 \rightarrow 13$
30941 measured reflections	$l = -30 \rightarrow 30$

Refinement

Refinement on F^2 H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0473P)^2 + 1.8115P]$ Least-squares matrix: full where $P = (F_0^2 + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.037$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{\text{max}} = 0.64 \text{ e} \text{ Å}^{-3}$ $wR(F^2) = 0.095$ $\Delta \rho_{\rm min} = -0.75 \text{ e } \text{\AA}^{-3}$ S = 1.045563 reflections 246 parameters Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Extinction correction: SHELXL97, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0064 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8339 (3)	1.0876 (2)	0.72563 (10)	0.0356 (5)
Cl1	1.12598 (8)	0.97308 (8)	0.78146 (3)	0.03755 (17)
C12	1.03476 (9)	0.81388 (8)	1.00892 (3)	0.03864 (17)
Br1	-0.05973 (3)	0.64021 (3)	0.547822 (14)	0.03635 (9)
Br2	0.74588 (3)	0.79954 (3)	0.654006 (13)	0.03479 (9)
Br3	0.46605 (4)	1.10035 (4)	0.748535 (15)	0.04018 (10)
C1	0.7893 (3)	0.9882 (3)	0.74980 (12)	0.0291 (5)
C2	0.6601 (3)	0.9090 (3)	0.71527 (12)	0.0293 (5)
H2	0.6169	0.8492	0.7448	0.035*
C3	0.5455 (3)	1.0008 (3)	0.68072 (13)	0.0319 (6)
Н3	0.5936	1.0672	0.6556	0.038*
C11	0.8542 (3)	0.9380 (3)	0.81242 (12)	0.0286 (5)
C12	1.0039 (3)	0.9343 (3)	0.83201 (13)	0.0291 (5)
C13	1.0609 (3)	0.8940 (3)	0.89222 (13)	0.0325 (6)
H13	1.1624	0.8890	0.9047	0.039*
C14	0.9656 (3)	0.8615 (3)	0.93321 (13)	0.0321 (6)
C15	0.8175 (3)	0.8649 (3)	0.91599 (13)	0.0328 (6)
H15	0.7541	0.8423	0.9449	0.039*
C16	0.7638 (3)	0.9019 (3)	0.85572 (13)	0.0316 (6)
H16	0.6621	0.9030	0.8433	0.038*
C21	0.4232 (3)	0.9357 (3)	0.63943 (13)	0.0319 (6)
C22	0.3423 (4)	0.8275 (3)	0.66015 (14)	0.0362 (6)
H22	0.3696	0.7916	0.7007	0.043*
C23	0.2261 (3)	0.7744 (3)	0.62292 (14)	0.0343 (6)
H23	0.1731	0.7030	0.6383	0.041*
C24	0.1825 (3)	0.8239 (3)	0.56133 (12)	0.0281 (5)
C25	0.2662 (3)	0.9305 (3)	0.53973 (12)	0.0297 (5)
C26	0.3855 (3)	0.9840 (3)	0.57971 (13)	0.0314 (6)
H26	0.4408	1.0547	0.5652	0.038*
C27	0.0616 (3)	0.7750 (3)	0.52019 (13)	0.0293 (5)
C28	0.0269 (3)	0.8237 (3)	0.46020 (13)	0.0305 (5)
C29	0.1124 (3)	0.9287 (3)	0.43966 (13)	0.0338 (6)
H29	0.0893	0.9636	0.3987	0.041*

supplementary materials

C30	0.2277 (3)	0.9800 (3)	0.47850 (13)	0.0321 (6)
H30	0.2833	1.0506	0.4640	0.039*
O31	-0.0872 (2)	0.7671 (3)	0.42291 (10)	0.0377 (5)
C31	-0.1160 (4)	0.8144 (4)	0.35984 (14)	0.0421 (7)
H31A	-0.1427	0.9102	0.3596	0.063*
H31B	-0.1956	0.7620	0.3371	0.063*
H31C	-0.0293	0.8031	0.3398	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0350 (11)	0.0367 (11)	0.0352 (10)	-0.0030 (9)	0.0054 (9)	0.0042 (8)
Cl1	0.0301 (3)	0.0462 (4)	0.0379 (3)	-0.0003 (3)	0.0102 (3)	0.0037 (3)
C12	0.0445 (4)	0.0410 (4)	0.0282 (3)	0.0026 (3)	-0.0020 (3)	0.0026 (3)
Br1	0.03615 (17)	0.03848 (17)	0.03545 (15)	-0.00812 (12)	0.00867 (12)	-0.00269 (11)
Br2	0.03989 (17)	0.03451 (16)	0.02969 (14)	0.00460 (12)	0.00409 (11)	-0.00076 (10)
Br3	0.03334 (17)	0.0458 (2)	0.04089 (17)	0.00262 (13)	0.00360 (12)	-0.01018 (13)
C1	0.0293 (14)	0.0315 (13)	0.0266 (11)	0.0002 (11)	0.0044 (10)	-0.0010 (10)
C2	0.0296 (13)	0.0327 (14)	0.0257 (11)	0.0005 (11)	0.0042 (10)	-0.0003 (10)
C3	0.0333 (15)	0.0336 (14)	0.0281 (12)	0.0005 (11)	0.0019 (10)	-0.0005 (10)
C11	0.0277 (13)	0.0301 (13)	0.0276 (11)	-0.0024 (10)	0.0020 (10)	-0.0002 (10)
C12	0.0277 (13)	0.0316 (13)	0.0285 (12)	0.0001 (11)	0.0056 (10)	-0.0017 (10)
C13	0.0291 (14)	0.0368 (15)	0.0308 (13)	0.0004 (11)	0.0013 (11)	-0.0033 (11)
C14	0.0370 (15)	0.0312 (14)	0.0269 (12)	0.0002 (11)	0.0008 (11)	-0.0003 (10)
C15	0.0327 (14)	0.0372 (15)	0.0285 (12)	-0.0041 (12)	0.0050 (11)	0.0003 (11)
C16	0.0265 (13)	0.0380 (15)	0.0300 (12)	-0.0045 (11)	0.0028 (10)	0.0000 (11)
C21	0.0307 (14)	0.0350 (14)	0.0293 (12)	-0.0006 (11)	0.0015 (10)	0.0016 (11)
C22	0.0394 (16)	0.0387 (15)	0.0290 (12)	-0.0061 (13)	-0.0005 (11)	0.0064 (11)
C23	0.0361 (15)	0.0362 (15)	0.0307 (13)	-0.0039 (12)	0.0049 (11)	0.0047 (11)
C24	0.0265 (13)	0.0307 (13)	0.0276 (11)	0.0005 (10)	0.0057 (10)	0.0011 (10)
C25	0.0294 (13)	0.0314 (13)	0.0281 (12)	0.0001 (11)	0.0031 (10)	0.0016 (10)
C26	0.0317 (14)	0.0327 (14)	0.0294 (12)	-0.0002 (11)	0.0029 (11)	0.0019 (10)
C27	0.0278 (13)	0.0287 (13)	0.0323 (12)	-0.0012 (10)	0.0075 (10)	-0.0022 (10)
C28	0.0261 (13)	0.0349 (14)	0.0304 (12)	0.0003 (11)	0.0034 (10)	-0.0023 (10)
C29	0.0333 (15)	0.0382 (15)	0.0286 (12)	0.0014 (12)	0.0001 (11)	0.0022 (11)
C30	0.0317 (15)	0.0343 (14)	0.0296 (12)	-0.0037 (11)	0.0020 (11)	0.0035 (11)
O31	0.0328 (11)	0.0473 (13)	0.0309 (10)	-0.0074 (10)	-0.0026 (8)	0.0008 (9)
C31	0.0358 (17)	0.058 (2)	0.0304 (14)	-0.0039 (15)	-0.0031 (12)	0.0013 (13)

Geometric parameters (Å, °)

O1—C1	1.216 (4)	C21—C26	1.380 (4)
Cl1—C12	1.737 (3)	C21—C22	1.420 (4)
Cl2—C14	1.742 (3)	C22—C23	1.363 (4)
Br1—C27	1.903 (3)	C22—H22	0.9500
Br2—C2	1.973 (3)	C23—C24	1.427 (4)
Br3—C3	2.002 (3)	С23—Н23	0.9500
C1—C11	1.492 (4)	C24—C27	1.420 (4)
C1—C2	1.541 (4)	C24—C25	1.432 (4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))))))))
C3-C211.493 (4)C26-H260.9500C3-H31.0000C27-C281.383 (4)C11-C161.399 (4)C28-O311.364 (4)C12-C131.403 (4)C28-C291.421 (4)C12-C131.397 (4)C29-C301.367 (4)C13-C141.385 (4)C29-H290.9500C13-H130.9500C30-H300.9500C14-C151.382 (4)O31-C311.436 (4)C15-C161.382 (4)C31-H31A0.9800C16-H160.9500C31-H31B0.9800C16-H160.9500C31-H31B0.9800O1-C1-C2119.6 (3)C22-C21-C3122.1 (3)O1-C1-C2119.6 (3)C23-C22-C21121.2 (3)C1-C2-C1112.7 (2)C21-C23-H22119.4C3-C2-C1112.7 (2)C21-C23-H23119.4C3-C2-H2108.74 (18)C22-C3-C24121.3 (3)C1-C2-H2110.4C27-C24-C25117.6 (3)C22-C2-H2117.6 (3)C23-C24-C25117.6 (3)C21-C3-H2110.4C27-C24-C25117.6 (3)C21-C3-H3108.7 (2)C26-C25-C24119.1 (3)C21-C3-H3108.7 (2)C26-C25-C24119.1 (3)C2-C3-H3108.7C30-C25-C24119.1 (3)C2-C3-H3108.7C21-C26-H26119.3))))))))))))))))))))))))))))))))))))))
C3—H31.0000C27—C281.383 (4C11—C161.399 (4)C28—O311.364 (4C11—C121.403 (4)C28—C291.421 (4C12—C131.397 (4)C29—C301.367 (4C13—C141.385 (4)C29—H290.9500C13—H130.9500C30—H300.9500C14—C151.382 (4)O31—C311.436 (4C15—C161.382 (4)C31—H31A0.9800C15—H150.9500C31—H31B0.9800C16—H160.9500C31—H31C0.9800O1—C1—C11122.9 (3)C22—C21—C3122.1 (3O1—C1—C2119.6 (3)C23—C22—H22119.4C3—C2—C1112.7 (2)C21—C23—H23119.4C3—C2—H2108.74 (18)C22—C23—C24121.3 (3C1—C2—H2110.4C24—C23—H23119.4C3—C2—H2110.4C27—C24—C25117.6 (2C21—C3—Br3108.7 (2)C26—C25—C24117.6 (3C2—C3—H3108.7C26—C25—C24119.1 (3C2—C3—H3108.7C21—C26—H26119.3))))))))))))))))))))))))))))))))))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))))))))))))))))))))))))))))))))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))))))))))))))))))))))))))))))))))))
C12—C131.397 (4)C29—C301.367 (4)C13—C141.385 (4)C29—H290.9500C13—H130.9500C30—H300.9500C14—C151.382 (4)O31—C311.436 (4)C15—C161.382 (4)C31—H31A0.9800C15—H150.9500C31—H31B0.9800C16—H160.9500C31—H31C0.9800O1—C1—C11122.9 (3)C22—C21—C3122.1 (3)O1—C1—C2119.6 (3)C23—C22—C21121.2 (3)C11—C1—C2117.5 (2)C23—C22—H22119.4C3—C2—C1112.7 (2)C21—C23—C24121.3 (3)C1—C2—Br2108.74 (18)C22—C23—C24121.3 (3)C1—C2—H2110.4C27—C24—C23124.5 (3)Br2—C2—H2110.4C27—C24—C25117.9 (2)C21—C3—Br3108.7 (2)C26—C25—C30121.3 (3)C2—C3—Br3108.7 (2)C26—C25—C24119.7 (2)C21—C3—H3108.7C21—C26—C25121.3 (3)G2—C3—H3108.7C21—C26—C25121.3 (3)Br3—C3—H3108.7C21—C26—C25121.3 (3)C2—C3—H3108.7C21—C26—C25121.3 (3)C2—C3—H3108.7C21—C26—C25121.3 (3)C3—C3—H3108.7C21—C26—C25121.3 (3)C3—C3—H3108.7C21—C26—C25121.3 (3)C3—C3—H3108.7C21—C26—C25121.3 (3)C3—C3—H3108.7C21—C26—C25121.3 (3)C3—C3—H3108.7C21—C26—C25121.3 (3) <tr< td=""><td>))))))))</td></tr<>))))))))
C13—C141.385 (4)C29—H290.9500C13—H130.9500C30—H300.9500C14—C151.382 (4)O31—C311.436 (4)C15—C161.382 (4)C31—H31A0.9800C15—H150.9500C31—H31B0.9800C16—H160.9500C31—H31C0.9800O1—C1—C11122.9 (3)C22—C21—C3122.1 (3)O1—C1—C2119.6 (3)C23—C22—C21121.2 (3)C11—C1—C2117.5 (2)C23—C22—H22119.4C3—C2—C1112.7 (2)C21—C23—C24121.3 (3)C1—C2—Br2108.74 (18)C22—C23—C24121.3 (3)C1—C2—H2110.4C27—C24—C23124.5 (3)Br2—C2—H2110.4C27—C24—C25117.9 (2)C21—C3—Br3108.7 (2)C26—C25—C30121.3 (3)C2—C3—Br3108.7C30—C25—C24119.1 (3)C2—C3—H3108.7C21—C26—C25121.3 (3)Br3—C3—H3108.7C21—C26—H26119.3)))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))
C3-C2-C1112.7 (2)C21-C22-H22119.4C3-C2-Br2108.74 (18)C22-C23-C24121.3 (3)C1-C2-Br2103.92 (18)C22-C23-H23119.4C3-C2-H2110.4C24-C23-H23119.4C1-C2-H2110.4C27-C24-C23124.5 (3)Br2-C2-H2110.4C27-C24-C25117.9 (2)C21-C3-C2117.6 (3)C23-C24-C25117.6 (3)C21-C3-Br3108.7 (2)C26-C25-C30121.3 (3)C2-C3-Br3103.93 (18)C26-C25-C24119.7 (2)C21-C3-H3108.7C30-C25-C24119.1 (3)Br3-C3-H3108.7C21-C26-C25121.3 (3)Br3-C3-H3108.7C21-C26-H26119.3))
C3—C2—Br2108.74 (18)C22—C23—C24121.3 (3)C1—C2—Br2103.92 (18)C22—C23—H23119.4C3—C2—H2110.4C24—C23—H23119.4C1—C2—H2110.4C27—C24—C23124.5 (3)Br2—C2—H2110.4C27—C24—C25117.9 (2)C21—C3—C2117.6 (3)C23—C24—C25117.6 (3)C2—C3—Br3108.7 (2)C26—C25—C30121.3 (3)C21—C3—H3108.7C30—C25—C24119.1 (3)C21—C3—H3108.7C21—C26—C25121.3 (3)Br3—C3—H3108.7C21—C26—H26119.3))
C1C2Br2 $103.92(18)$ $C22C23H23$ 119.4 $C3C2H2$ 110.4 $C24C23H23$ 119.4 $C1C2H2$ 110.4 $C27C24C23$ 124.5 (3) $Br2C2H2$ 110.4 $C27C24C25$ 117.9 (2) $C21C3C2$ 117.6 (3) $C23C24C25$ 117.6 (3) $C21C3Br3$ 108.7 (2) $C26C25C30$ 121.3 (3) $C2C3Br3$ 103.93 (18) $C26C25C24$ 119.7 (2) $C21C3H3$ 108.7 $C30C25C24$ 119.1 (3) $C2C3H3$ 108.7 $C21C26C25$ 121.3 (3) $Br3C3H3$ 108.7 $C21C26H26$ 119.3)
C3—C2—H2110.4C24—C23—H23119.4C1—C2—H2110.4C27—C24—C23124.5 (3)Br2—C2—H2110.4C27—C24—C25117.9 (2)C21—C3—C2117.6 (3)C23—C24—C25117.6 (3)C21—C3—Br3108.7 (2)C26—C25—C30121.3 (3)C2—C3—Br3103.93 (18)C26—C25—C24119.7 (2)C21—C3—H3108.7C30—C25—C24119.1 (3)Br3—C3—H3108.7C21—C26—C25121.3 (3)))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))
Br2—C2—H2 110.4 C27—C24—C25 117.9 (2 C21—C3—C2 117.6 (3) C23—C24—C25 117.6 (3) C21—C3—Br3 108.7 (2) C26—C25—C30 121.3 (3) C2—C3—Br3 103.93 (18) C26—C25—C24 119.7 (2) C21—C3—H3 108.7 C30—C25—C24 119.1 (3) Rr3—C3—H3 108.7 C21—C26—C25 121.3 (3))
C21C3C2 117.6 (3) C23C24C25 117.6 (3) C21C3Br3 108.7 (2) C26C25C30 121.3 (3) C2C3Br3 103.93 (18) C26C25C24 119.7 (2) C21C3H3 108.7 C30C25C24 119.1 (3) C2C3H3 108.7 C21C26C25 121.3 (3) Br3C3H3 108.7 C21C26H26 119.3	·
C21—C3—Br3 108.7 (2) C26—C25—C30 121.3 (3 C2—C3—Br3 103.93 (18) C26—C25—C24 119.7 (2) C21—C3—H3 108.7 C30—C25—C24 119.1 (3) C2—C3—H3 108.7 C21—C26—C25 121.3 (3) Br3—C3—H3 108.7 C21—C26—H26 119.3)
C2—C3—Br3 103.93 (18) C26—C25—C24 119.7 (2 C21—C3—H3 108.7 C30—C25—C24 119.1 (3) C2—C3—H3 108.7 C21—C26—C25 121.3 (3) Br3—C3—H3 108.7 C21—C26—H26 119.3)
C21—C3—H3 108.7 C30—C25—C24 119.1 (3) C2—C3—H3 108.7 C21—C26—C25 121.3 (3) Br3—C3—H3 108.7 C21—C26—H26 119.3)
C2-C3-H3108.7C21-C26-C25121.3 (3Br3-C3-H3108.7C21-C26-H26119.3)
Br3—C3—H3 108.7 C21—C26—H26 119.3)
C16—C11—C12 117.6 (3) C25—C26—H26 119.3	
C16—C11—C1 119.5 (3) C28—C27—C24 122.1 (3)
C12—C11—C1 122.8 (2) C28—C27—Br1 118.1 (2)
C13—C12—C11 121.3 (3) C24—C27—Br1 119.8 (2)
C13—C12—Cl1 117.2 (2) O31—C28—C27 118.3 (3)
C11—C12—Cl1 121.4 (2) O31—C28—C29 122.8 (3)
C14—C13—C12 118.3 (3) C27—C28—C29 119.0 (3))
C14—C13—H13 120.8 C30—C29—C28 120.4 (3)
C12—C13—H13 120.8 C30—C29—H29 119.8	
C15—C14—C13 122.2 (3) C28—C29—H29 119.8	
C15—C14—Cl2 118.9 (2) C29—C30—C25 121.5 (3)
C13—C14—Cl2 118.9 (2) C29—C30—H30 119.2	
C16—C15—C14 118.4 (3) C25—C30—H30 119.2	
C16—C15—H15 120.8 C28—O31—C31 117.1 (2	
C14—C15—H15 120.8 O31—C31—H31A 109.5)
C15—C16—C11 122.2 (3) O31—C31—H31B 109.5)
C15—C16—H16 118.9 H31A—C31—H31B 109.5)
C11—C16—H16 118.9 O31—C31—H31C 109.5)
)
C26—C21—C22 118.9 (3) H31A—C31—H31C 109.5)

supplementary materials

O1—C1—C2—C3	-38.8 (4)	C26—C21—C22—C23	-2.2(5)
C11—C1—C2—C3	141.1 (3)	C3—C21—C22—C23	176.4 (3)
O1—C1—C2—Br2	78.7 (3)	C21—C22—C23—C24	0.9 (5)
C11—C1—C2—Br2	-101.3 (2)	C22—C23—C24—C27	-179.1 (3)
C1—C2—C3—C21	173.0 (2)	C22—C23—C24—C25	0.7 (5)
Br2—C2—C3—C21	58.4 (3)	C27—C24—C25—C26	178.6 (3)
C1—C2—C3—Br3	-66.8 (2)	C23—C24—C25—C26	-1.1 (4)
Br2—C2—C3—Br3	178.53 (13)	C27—C24—C25—C30	-1.5 (4)
O1—C1—C11—C16	134.0 (3)	C23—C24—C25—C30	178.7 (3)
C2-C1-C11-C16	-46.0 (4)	C22—C21—C26—C25	1.7 (5)
O1-C1-C11-C12	-41.1 (4)	C3-C21-C26-C25	-176.9 (3)
C2-C1-C11-C12	138.9 (3)	C30—C25—C26—C21	-179.9 (3)
C16-C11-C12-C13	1.1 (4)	C24—C25—C26—C21	-0.1 (5)
C1—C11—C12—C13	176.3 (3)	C23—C24—C27—C28	-177.9 (3)
C16-C11-C12-Cl1	178.4 (2)	C25—C24—C27—C28	2.4 (4)
C1—C11—C12—Cl1	-6.4 (4)	C23—C24—C27—Br1	3.1 (4)
C11—C12—C13—C14	-2.0 (4)	C25-C24-C27-Br1	-176.7 (2)
Cl1—C12—C13—C14	-179.5 (2)	C24—C27—C28—O31	177.2 (3)
C12—C13—C14—C15	1.4 (5)	Br1-C27-C28-O31	-3.8 (4)
C12-C13-C14-Cl2	-178.9 (2)	C24—C27—C28—C29	-1.9 (4)
C13-C14-C15-C16	0.1 (5)	Br1-C27-C28-C29	177.2 (2)
Cl2—C14—C15—C16	-179.6 (2)	O31—C28—C29—C30	-178.5 (3)
C14-C15-C16-C11	-1.1 (5)	C27—C28—C29—C30	0.5 (5)
C12-C11-C16-C15	0.5 (5)	C28—C29—C30—C25	0.3 (5)
C1-C11-C16-C15	-174.8 (3)	C26—C25—C30—C29	-179.9 (3)
C2—C3—C21—C26	-131.5 (3)	C24—C25—C30—C29	0.2 (5)
Br3—C3—C21—C26	110.8 (3)	C27—C28—O31—C31	-176.7 (3)
C2—C3—C21—C22	50.0 (4)	C29-C28-O31-C31	2.3 (4)
Br3—C3—C21—C22	-67.7 (3)		

Fig. 1